If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4y^2+16y-30=0
a = 4; b = 16; c = -30;
Δ = b2-4ac
Δ = 162-4·4·(-30)
Δ = 736
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{736}=\sqrt{16*46}=\sqrt{16}*\sqrt{46}=4\sqrt{46}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-4\sqrt{46}}{2*4}=\frac{-16-4\sqrt{46}}{8} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+4\sqrt{46}}{2*4}=\frac{-16+4\sqrt{46}}{8} $
| 0.5+2.8-0.4=6.2-0.1n | | 66-x=177 | | 3h-5h*11=17 | | 5e+6=7e+4 | | 1m+125=725 | | 4u−3u=8 | | 16–2x=8x–4 | | 77=4v+9 | | -5(6m-7)=-175 | | 2(4w+10)+2w=240 | | 2x+7=7(7x+1)-6x | | 13x-219=18-7x | | 5.2x=1.45 | | -2(7x-10)+6=-10x- | | 5x+12/5=8 | | 15h-45=120 | | -5(-5-8n)=225 | | 0.35s(30-s)=2.9 | | 3-5(2x-3)=(4x-2)+2 | | 96=-4+10u | | 7-3(x-10)=2x-45 | | −x−3=14(x−12) | | 6a^2-a+15=0 | | 7w=-32 | | 96=–4+10u | | 7(5n+4)=-28+7n | | X=(2x-10)120 | | 18=-9(v+7) | | 3x/6-x+1/2=x-1/4 | | 8(1-8x)-2x=-454 | | 4n-40=7(-2n+20 | | -7/4-1/3x=-6/5 |